skip to main content


Search for: All records

Creators/Authors contains: "Medan, Ilija"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We combine photometric metallicities with astrometry from Gaia DR3 to examine the chemodynamic structure of ∼250 000 K dwarfs in the solar neighbourhood (SN). In kinematics, we observe ridges/clumps of ‘kinematic groups’, like studies of more massive main-sequence stars. Here, we note clear differences in both metallicity and vertical velocity as compared with the surrounding regions in velocity space and hypothesize this is due to differences in mean age. To test this, we develop a method to estimate the age distribution of subpopulations of stars. In this method, we use GALAH data to define probability distributions of W versus [M/H] in age bins of 2 Gyr and determine optimal age distributions as the best-fitting weighted sum of these distributions. This process is then validated using the GALAH subset. We estimate the probable age distribution for regions in the kinematic plane, where we find significant substructure that is correlated with the kinematic groups. Most notably, we find an age gradient across the Hercules streams that is correlated with birth radius. Finally, we examine the bending and breathing modes as a function of age. From this, we observe potential hints of an increase in the bending amplitude with age, which will require further analysis in order to confirm it. This is one of the first studies to examine these chemodynamics in the SN using primarily low-mass stars and we hope these findings can better constrain dynamical models of the Milky Way due to the increase in resolution the sample size provides.

     
    more » « less
  2. Abstract

    Dust-induced polarization in the interstellar medium (ISM) is due to asymmetric grains aligned with an external reference direction, usually the magnetic field. For both the leading alignment theories, the alignment of the grain’s angular momentum with one of its principal axes and the coupling with the magnetic field requires the grain to be paramagnetic. Of the two main components of interstellar dust, silicates are paramagnetic, while carbon dust is diamagnetic. Hence, carbon grains are not expected to align in the ISM. To probe the physics of carbon grain alignment, we have acquired Stratospheric Observatory for Infrared Astronomy/Higch-resolution Airborne Wideband Camera-plus far-infrared photometry and polarimetry of the carbon-rich circumstellar envelope (CSE) of the asymptotic giant branch star IRC+10° 216. The dust in such CSEs are fully carbonaceous and thus provide unique laboratories for probing carbon grain alignment. We find a centrosymmetric, radial, polarization pattern, where the polarization fraction is well correlated with the dust temperature. Together with estimates of a low fractional polarization from optical polarization of background stars, we interpret these results to be due to a second-order, direct radiative external alignment of grains without internal alignment. Our results indicate that (pure) carbon dust does not contribute significantly to the observed ISM polarization, consistent with the nondetection of polarization in the 3.4μm feature due to aliphatic CH bonds on the grain surface.

     
    more » « less
  3. Abstract The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or “Mappers”: the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes ∼25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024